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ON A COMPUTATIONAL ALGORITHM FOR SOLVING GAME CONTROL PROBLEMS* 

A.M. TARAs~YEV,V.N.WSBAKOV and A.P. KBRIPUNOV 

A positional differential game of approach to a target is considered. 
The construction of the set of positional absorption (SPA) is studied. 
Relations are given, on the basis of which an algorithm of approximate 
computation of the SPA for controlled systems in the plane is developed. 

Suppose we are given the control system whose behaviour in the time interval [to,61 (e>t,) 
is described by the equation 

d&t = f (t, 3‘, u, u), 5 (to) = 2,; 11 Er P, v E Q f0.U 

Here, I is the m-dimensional phase vector of the system, which lies in Euclidean space 
Rm, II is the vector of control signals, ~1 is a vector characterizing the noise acting on the 
system, and P,Q are compacta in Euclidean spaces RP, Rg respectively. 

The system is assumed to satisfy the standard conditions in the theory of differential 
games (/l/,p.32,). 

The task of constructing the SPA is allied to the task of constructing the positional 
strategy which guarantees that the target is hit at the instant 6 /l-3/. The SPA is the 
set of all points for which such a strategy can be constructed. The SPA is known /l-6/ to be 
obtainable by path procedures, in which an absorption operator is used at each step. Questions 
of convergence in such procedures are also discussed in /7-lO/.**(**See also, A.M. Taras'ev 
and V.N. Ushakov, On the construction of stable bridges in the min-max approach-evasion game, 
Sverdlovsk, Dep. at VINITI No.2454-83, 1983). In addition, problems concerned with computer 
modelling of SPA for linear systems are studied in /8, 91. 

Computational aspects of SPA construction are considered below. In Sect.1 the con- 
struction of the stable absorption operator is distinguished by means of a certain set of 
conditions, and this operator is the key to finding the SPA. The construction is a fairly 
general scheme which is suitable from the point of view of approximate computer evaluations. 
In Sect.2 the conditions are found under which a discrete approximation of SPA is convergent 
to it when the discretization step tends to zero. In Sect.3 relations are written, on the 
basis of which the algorithm of approximate calculation of the discrete approximation for 
controlled systems in the plane is developed. The realization of the algorithm is confined 
to cases when the elements of the discrete approximation are simply connected in phase space. 
Examples are quoted. 

1. We introduce the concept of an operator of stable absorption and the u-stable bridge, 
and consider some versions of u-stability and prove their equivalence. 

Let MC R" be the target set in the approach problem at instant 6 /l-3/. We assume 
that all the construction below (of stable bridges, motions, and neighbourhoods of the target 
M) lie in a fairly large compact domain D CI [to,61 X fi". Let G = {f~ I?“:\/ fll<K < co) be a 
sphere such that F(t,s) = CO {f =,f(t, ~,u,u) :UEP, YE Q}cG, where co{f} is the closed convex 
hull of set {f}, and /ffil is the norm of vector f in Euclidean space. 

Suppose we are given a set yy' of elements -$, and a family of mappings {F$: D M 2a "1* 
corresponding to the set Y and satisfying the following conditions. 

Al. Given any (t,x,$)C%D X 'Y, the set Fq(t,s) is convex and closed, and satisfies the 

inclusion F*(t,s) C G and further, the mapping Flp: D H ZRm is upper semicontinuous for 
any $EY. 

A2. Given any (t,X, l)E D X S 

xt.ki;pF (f)= $,(t,x,E), F z Fq(t, 5) (W _-- 
S=(lEW: IIlII=ll, PF(l)==ryZ,f) 

5 (t, x, 1) = mil; l.t$ (4 f (t, x9 u, u)) 

(<k f? is the scalar product of vectors 1 and f). 
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Taking W* C I?", we introduce the notation XQ (t,; t*, W*) = {X, E. IP : W* fi XQ (t*; t,, x*) # 

01% &I o*; t,, x*) is the set in R"' of all points at which arrive at instant t* the solutions 
x(.)=(l(t):t*< t<,<*,r(t*)=s*) of differential inclusion & ~Fq(t,z) 

2, @*; t*, w*) = !_I 
X.EW’ 

2, (t,; t*, x*), zg (t,; t*, s*) 

is the set in R” of all points at which arrive at instant '6* the solutions Z(S) = (z(T):T* < 
z < t*, 2 (t*) = x’p) of differential inclusion 2'~ GQ,(t,z), where 4?$(r,z) = - F,(t,z), t-t-t = 6, 
t, +z* ==6, t*+z* =4. 

We give the definition of the operator of stable absorption. 

Definition 1. The operator of stable absorption n(t,;t *, WY ($0 <t* <t* < 6, W’ c R”) 

is the mapping i't(t*; t*, .) : 2’” +-+ xRm, given by the relation 

n(t*;t*t w*1= n X*@*; t*, W*)=J1~qz$(t*; t*, w*) 
$ZW (1.2) 

Let MC:R” and WCD be closed sets. 

Definition 2. We call set W a u-stable bridge in the problem of approach to N at fixed 

instant 6, if 

W(6) c M, w (t*) c s (1,; t*, w (t*)), vt*, t* (to G t* < (1.3) 
t* < 6) (w(t) = {z E R” : (t, z) E WI) 

Assume that {F,:D M zRm}, {FQ* :n H 2R”‘} are the families of mappings corresponding to 

sets T and V* and satisfying conditions Ai, AZ. Each family induces its own operator 3% @*; 
t*, W*) of stable absorption. It can be shown that a set w which is u-stable in the sense 

of one operator is u-stable in the sense of the other, i.e., the concept of u-stability is 

invariant with respect to families of mappings which satisfy conditions Al, A2. In this 

sense definition 2 is well-posed. 

we take 

G1 (t7 z) := G n (f E R'" : <4f> < 5 it,4 I)) 6 E ‘9 

Ft.(.) (t, 4 = co If ct, x7 u, v (4) :u~P)(v(-)EV,V is the set of all mappings ~(.):PH@. 

The families of mappings (f$:D n zR”}, {Fat., :L) - zRfn}, corresponding to sets S and V 

respectively, satisfy conditions Al, AZ, and hence the familiar definitions of u-stability, 

/l, 2, 7, 11,’ fit into the scheme of Definitions I_, 2. Hence our Definition 2 is equivalent 

to the definitions of /I, 2, 7, 11,'. 

We take system (0.1) with the right-hand side 

f (t, z, u, Y) = f'l' + ff?), I"' = f'"' (t, I, u), f(Z) = f'"' (t, I, n) 

which satisfies the conditions of /l/, where we put 

PI) (t, 2) E co {j(r) : u E P}, F(3) (t, 2) = co {f'?' : u E Q] 

(1.4) 

We assume that F'(2) (t, z) is a convex polyhedron, expressible as PC') (t, ~)=CO {f'"' (t7 2): 0 = 
1,. . .,nf, where f@) (o = 1, . . . n) are continuous functions of t, 2. 

We put Pm (t, x) = F(*) (t, 5) -+- f(O) (t, z) (0 = 1, . ., n). 

The family of mappings {F, :Dc zRm}, corresponding to the set ?2 =f (o = f,...,n},satisfies 

conditions Al, AZ. Thus, for system (0.1) with right-hand side (1.4) we can give a definition 

of u-stability in terms of the family of mappings {F,:D - 2am), i.e., the operator of stable 

absorption for system (0.1) with right-hand side (1.4) can be written as 

n(t,;t*,W*)== ;$ X,(t*;t*,W*)= fi Z,(t*;t*,W*) 
w=l (1.5) @=I 

to <t* < t* d @, W*CRm 

2. Consider the discrete (in time) analogues of the scheme of u-stability given in Sect. 

1. We assume that thefamily of mappings {Fq:D ++ ZRm}, corresponding to set yy, satisfies the 
following in addition to conditions Al, AX: 

A3. There is a function o*(6) (w*(h)4 0, 66O), such that, given any (t,,~,), (t*,z*) of 

D and $Eyj 

~(~~(~*,~*)~ I;tp(t*,rc*))<~*(/t" -t*t f /I 29 -J+* II) w 

A4. There is a number hE [O,m) such that, for any (t,2&), (t,s*) of D and $ E y e 
d (Ftp (6 23, F* tc 1,)) < h II 5* - I* II (2.2) 
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(d(F*,F,) is the Hausdorff distance between F* and F,). 
We give a definition of the approximating system of sets (ASS), aimed at approximate 

calculation of the maximum u-stable bridge. The concept of ASS arises when the continuous 
scheme is replaced by a discrete scheme, i.e., when we introduce the division r = {tO,tt,..., 
tN = 6) of the interval I&, 61 and replace the domain of attainability Xy.(t*;t,,r,) appearing 
in Definition 2 by the linear approximations XQ~ (t*; t,,r,) (t* = t:, t* = ti+,). 

Definition 3. The approximating operator of stable absorption n= (t,; t*, W*) (to d t* < 

t* <i?, W* c R”) is the mapping ma(t*;l*, W*):ZK’“w 2Rml given by the relations 

3X* (f,; f*,W*):--q~~x~~(t*;f*.W*) (2.3) 

Xldf(f*;t$, W*)= ;* EP: w* n x*ajt*; t,. I*)# z*j) 

X$” (t*; t,, z,) == z.+ i_ (t* - t*) Fe (t+,, .?-*) 

Definition 4. The ASS {Wa(ti):ti E r} is the system for which 

Wd(t?+‘)=MeNj W~(ti)=n’(ti;ti,,,W’(ti,,)) 

for i = N- 1, N - 2, . . ..O. the number ~,~is found from the recurrence relations Ei = o (Ai_,)+ 
(1 + hAi...l)e~_l, E, = 0; i =Z I, 2, . . ., N; Ai = ti+l - ti, ti E: I”, o (A) = Aw* ((1 + X) A). 

we denote by ae the closed E-neighbourhood of set @. 
Let (J?,} be a sequence of divisions r, = {to, t,, . . ., tv(,,)} of the interval [to, @I, whose 

diameter A@) = max (t,+l - ti) tends to zero as n-t co. we have in mind that each I?,, has its 
1 

own &I, 81, . . ., tx(d 
Denote the ASS corresponding to division I', by (Wa*n(tj):ti c: I?,}. 

Definition 5. Set W” consists of all the points (t*, x*)E Ds for which there exists 
the sequence 

{(t,,~~):t,=t,(f,)E [t~,fi],z, E Wa' "(t), lim x,=r*) 
R-a, 

@?I @*I is the instant of division r, nearest on the right to t*). 

Theorem 1. Let {F;p:D++ zR"} be the family of mappings which satisfies conditions Al-A4. 
Then w" is the maximum u-stable bridge. 

The theorem gives a constructive way of approximately obtaining set W"on the basis of 
retrograde procedures, formalized in Definition 4. 

In Definition 4 we so to speak started from the right-hand side 

n(1*:t*,W*)=~~~Xy(t*;t*.W*f 

of Eq.Cl.2). we shall now take into account the second part of this equation and construct 
a new retrograde procedure. 

Put 

We assume that the family of mappings (Flp :D w Pm } also satisfies the following: 
A5. There are numbers K*,r*,6* of (O,m) such that, for any (t*,r*)E D, t, E [&,,t*], *E’%‘, 

r E (0, (t* - t*) r*), t* - t, < 6* 

(2,” (t,; t*, s*))rc &lb ft,; t*, Urf*r(4 
(Uger (s*) = {x E R” : 11 z --2*I/d~w 

Notice that condition A5 is not excessively restrictive. It is satisfied e.g., by the 

family of mappings {Fe.,: D t-+ zR”}. 

Definition 6. The approximating operator of stable absorption mb @*; t*, w*) (to ft* < 
t*<@, W*cP’), is the mapping nb(t,;t*, .):2am* 2a-, given by the relation 

n” &; t*, w*) =rp& Zrpb (t,; t*, W*) (2.4) 
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Definition 7, The ASS (i@'(ti):ti E f} is the system for which 

Wb(tY)=MTN, Wb(ti)= 31b(ti; ti+rt Wb(ti+l))r LLZN - 1, aa.1 0 

where &is found from the recurrence relations 

Theorem 2. Let {FQ : D H zAm} be a family of mappings which satisfies conditions Al-As. 
Then w" is the set of all points (&, "*)fLZ D which can be written as (t,, s,) = lim (t,, ~2, 
n-+oo, where t, = t, (t*) is the instant of division I',, nearest on the right to t,, and 
& E W" (I,). 

3. Consider the problem of approximately constructing set!w for system (0.1) with riqht- 
hand side (1.4). Using Theorems 1 and 2, the problem will be solved as a problem of approxi- 
mately constructing system (IV(&) : ti E F,,) or a system {Wb(tj): ti E F,}. 

III addition to the conditions imposed on the right-hand side of system (O.l), we assume 
that we have the representation F(n (t, x) = co {It,,, (t, 5): y = 1, ., ic}, that functions jcv, (t, z), 
few) (t? z)(y = 1, . ., k; w = 1, ., n) satisfy the inequalities II fa, (t, x)II < x (1 + (1 zI\ ), 11 f(o) (t, z)II f 
x (1 $ )( I \I), x > 0, (t, x)~[t,,~ Si k R”, and a Lipschitz condition in D* -= {(t, J) : t E ito, @I, !I ~11%~ 
d, eXp 2x (6 - to)}_ 

Here, d, = max (2, d(Me, {0})}, E E (0, cm) is a fixed number. 
Let division r have diameter A(F), satisfying the inequality L(D*)A(r)<"i,, 1 -2~A(f)> 

"I,. we also assume that, with any (t,~)e D*, the set {f(v) (t,s) : y = 1, . . ., k} is a KOA (IT)- 

mesh on the set M(l) (1, X), where K"E (0,~) is independent of the choice of (t,~). 
We introduce the notation 

JP(t,)= M,, X”,, y (ti+*; ti, X (ti)) L: XT (ti) i 
Ai(f'"' (ti, I) + f(y) (ti, z (ti)))* xl',,,(ti; ';+I Wa(t<~d) -2 

(5 (ti) E R" : X”,, y (li+l; fi, 5 (h)) !I wI” (ti+l) # El 

We then have the approximate equation 

(3.1) 

understood in the sense that 

d (Xm” (tic tt+l, W” (ti+l)) 

Hence follows the approximate equation 

Using this, we replace the problem of constructing the system of sets {W'(t,):& E r} by 
the problem of constructing system fWdo(te):ti E I’}, where sets W*((t,) (i = O,%,..,N) are 
given recurrently: 

Wd" (tN) = Me, Wd’(ti)= ii ; Xz,-f(tj;ti+,, Wda(ti+l)), i== 
w=ly=l 

1v - 1, N - 2, . . . , 0; x”,, y &; t&l, w*= (L)) = 

Ir W E Rm : Wd” (ti+d n X”,, y tti+x; k, 5 (h)) += ~$3 

The set X&,(ti; ti+lr Wda(ti+l)) can be written as 

U 
Stti+l)ZWda(l~ 

%o, y (&G &I, 5 (ti*l)) 
1+1) 

where 5 (b) = G,v (h; &+I, .z (k+~)) is the solution of the equation 

z .t Ai (f'"' (tit 5) + f(v) Pt, 4) = I (ti+d (3.3) 

Notice that, in view of the conditions on the right-hand side (1.4) of system (O.l), and 
the choice of domain D*, the solution z = =(tr) of Eq. (3.3) with (ti+.Ir I (ticI)) E: Wd' (tl+l) C D' 

is unique, and can be found as the limit I (ti) = lim t@') (ti), Z(P) (ti) = Z$ (tj; ti+r, 5 (k+l)) as p + 00, 
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where 

Here we have the inclusions (ti, 5 (1,)) E D*, (ti, x(P) (ti)) E D* for p = I,?,,.... 

We put 

The system (wda@ (tj) : ti E r} is the approximation of system {W*(ti):tg E r}, obtained by 

calculating system {Wd”(&):ti E r} as a result of operating only with the p-th approximations 
of Eq.f3.3). Here, (ti, W&@ (tt)) f D* for any i = 0, 1, . . ., iv. 

A construction similar to the above can be given for the approximate calculation of 
system {Wb (tf) : ti E l?}. 

We will consider an example illustrating the theory. Let the controlled system be 
described in the time interval [0,21 by the equations 

22' = z, + ", cl' = -z?* cos (n + 21s') + +* + z+a +- U 

where the scalar controls u and u are subject to the constraints 1~ E l-0.5; 0.51, v E[-1.01. The 
target M in the approach problem is the unit circle in the plane. 

Fig.1 

We computed the system of sets {A@%*: QE I'$, corresponding to the division I'= (tO,tl,..., 
$vL where to = 0, tN = 6 = 2, ti+l = tt -j- A, A = 0.05. In Fig.1 we show the sets W'd%*(ti), corresponding 
to instants 0.0, 0.5, 1.0, 1.5, 2.0. Each of the five sets is a compacturn, bounded by a curve 
marked by the appropriate number in Fig.1. 

1. 

2. 

3. 
4. 
5. 
6. 
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REDUCING THE EQUATIONS OF MOTION OF CERTAIN NON-HOLONOMIC CHAPLYGIN SYSTEMS 
TO LAGRANGIAN AND HAMILTONIAN FORM* 

N.K. MOSHCHUK 

Non-holonomic Chaplygin systems /l/ with II degrees of freedomand m(m<n) 

first integrals linear with respect to velocities, are considered. It is 

assumed that Lagrange's function is constructed taking into account the 

non-holonomic constraints imposed on the system, and the integrals are 

independent of the first m generalized coordinates. Then, provided that 

certain conditions are met, m linear non-holonomic coordinates (quasi- 

coordinates) can be introduced in such a way that the first m equations 

of motion in these coordinates will have the form of the usual Lagrange's 

equations. 

The present paper deals with the most interesting, integrable case, 
when m=n--l. It is shown that if certain conditions are met, the 

trajectories of such a system in phase space will represent quasiperiodic 

windings on the n-dimensional tori. Examples are given, namely, ofasolid 

of revolution rolling along a fixed horizontal plane, and of the motion 

of a circular disc with a sharp edge on a smooth, horizontal ice surface. 

The problem of reducing Chaplygin's equations of motion of non- 

holonomic systems to the form of the ordinary Lagranqian and Hamiltonian 

equations has been studied extensively. A detailed survey and an analysis 

of the existing approaches to solving this problem are given in /2/. 

1. Let us consider a natural, non-holonomic mechanical Chaplyqin system /l/ acted upon 

by potential forces. We assume that Lagrange's function constructed taking into account 

the non-integrable constraints imposed on the system, has the form 

L(q,q’)=T-lIn, T=‘/zq’Wq’, n=n(q) 

p = II @ij (q)ll (in i = l7 27 . . .7 n, 

(1.1) 

Here q, q’ are column matrices of the generalized coordinates and velocities of the 

system, 51 is a positive definite symmetric n X n-matrix, T and n is the kinetic and 

potential energy of the system respectively. The total energy of the system is conserved 

(T + fl =h = const), and the differential Chaplygin equations of motion 

d aL ar, 
-7 

dt 6’q - -_=r 
aq 

(4.2) 

will describe the motion of the system independently of the equations of non-integrable con- 

straints. In (1.2) I' is a column matrix of the non-holonomic terms (ri (q,q’) is the quadratic 
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